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Introduction



Goals

1 Use python packages from other people
2 Provide your own python packages to other people
3 Get an overview of different Package Managers for that
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OS Scope

1 linux
2 macos, *BSD
3 windows
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OS Scope

1 linux
2 macos, *BSD
3 windows

in pure python
with WSL
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Part 1: Use python packages



Do you really need it ?

Dependency ≈ Addiction

is this dependency essential ?
can it be made optional ?
what about its own dependencies ?
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Is it good enough ?

is it pure python ?
are you confident in its future ?
are you sure you will be able to handle its updates ?
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Document your dependencies

Either:

1 README.md
2 requirements.txt
3 pyproject.toml

So that:

1 you won’t forget
2 you can pip install -r requirements.txt
3 you can pip install .
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Install them

Use a venv
Troubleshooting: $PYTHONPATH

Also troubleshooting:

import sys
print(sys.path)
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Dependencies versions

keep them up to date
document your needs
document what won’t work
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Versions constraints & pinning

constraint graphs grow quickly
solutions can change over time
use a lock file with your current working solution

pip freeze > requirements.lock

Django==4.2.11
httpx==0.27.0
ipython==8.23.0
jedi==0.19.1
Jinja2==3.1.3
matplotlib-inline==0.1.6
numpy==1.26.4
pandas==2.2.1
tqdm==4.66.2
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Part 2: Distribute your packages



Follow community standards

ruff format
ruff check

Use those in your IDE, git hooks, and/or CI
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Choose a license

https://spdx.org/licenses/

eg.: BSD / MIT / Apache / GPL
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Choose a package builder

setuptools
poetry
flit
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Write a pyproject.toml

name
version
authors
license
urls
dependencies
entrypoints
tooling configuration

ref. your builder docs
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Test your packaging

python -m build
pip install .
in your CI

This is enough for other people to use eg.:

pip install \
git+https://gitlab.laas.fr/gsaurel/ndh
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Create a release

decide a version number: https://semver.org/
document changes between versions:
https://keepachangelog.com/
publish a git tag (bonus points if signed)
publish package archives (bonus points if signed)
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(Optionnal) Publish on PyPI

twine
flit publish
poetry publish
github.com/pypa/gh‑action‑pypi‑publish
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Part 3: Some python package managers



Your distribution package manager

apt
pacman
rpm

This is the most simple and most stable solution.
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pip

This is the incontournable standard solution.
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pip‑tools

https://github.com/jazzband/pip‑tools

Simple dependency constraint declaration + solution pinning
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poetry

https://python‑poetry.org/

Full feature and widest adoption.
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pipenv

Should be deprecated in favor of poetry.
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pdm

https://pdm‑project.org/latest/

A bit more modern than poetry, but narrower adoption and
support.
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conda / mamba

This will eat your home.
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uv

https://github.com/astral‑sh/uv

The new cool kid.
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nix

The perfection you didn’t ask for, yet.

Come to the next formations to knowmore !
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Questions ?



Links

Prior art
Managing Python Packages (2019)
Python Tooling (2022)

This presentation
https://homepages.laas.fr/gsaurel/talks/
python-packaging.pdf
https://matrix.to/#/room/#allo‑pi2:laas.fr
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