
Python Packaging

for users and devs

2024‑05‑17

Guilhem Saurel

This presentation

Available at
https://homepages.laas.fr/gsaurel/talks/

python-packaging.pdf

Under License

https://creativecommons.org/licenses/by‑sa/4.0/

2/34

https://homepages.laas.fr/gsaurel/talks/python-packaging.pdf
https://homepages.laas.fr/gsaurel/talks/python-packaging.pdf
https://creativecommons.org/licenses/by-sa/4.0/

This presentation (continued)

Source
https://gitlab.laas.fr/gsaurel/talks :

python-packaging.md

Discussions
https://matrix.to/#/room/#allo‑pi2:laas.fr

3/34

https://gitlab.laas.fr/gsaurel/talks/-/blob/main/python-packaging.md
https://gitlab.laas.fr/gsaurel/talks/-/blob/main/python-packaging.md
https://matrix.to/#/room/#allo-pi2:laas.fr

Introduction

Goals

1 Use python packages from other people
2 Provide your own python packages to other people
3 Get an overview of different Package Managers for that

Introduction 5/34

OS Scope

1 linux
2 macos, *BSD
3 windows

Introduction 6/34

OS Scope

1 linux
2 macos, *BSD
3 windows

in pure python
with WSL

Introduction 7/34

Part 1: Use python packages

Do you really need it ?

Dependency ≈ Addiction

is this dependency essential ?
can it be made optional ?
what about its own dependencies ?

Part 1: Use python packages 9/34

Do you really need it ?

Dependency ≈ Addiction

is this dependency essential ?
can it be made optional ?
what about its own dependencies ?

Part 1: Use python packages 9/34

Is it good enough ?

is it pure python ?
are you confident in its future ?
are you sure you will be able to handle its updates ?

Part 1: Use python packages 10/34

Document your dependencies

Either:

1 README.md
2 requirements.txt
3 pyproject.toml

So that:

1 you won’t forget
2 you can pip install -r requirements.txt
3 you can pip install .

Part 1: Use python packages 11/34

Document your dependencies

Either:

1 README.md
2 requirements.txt
3 pyproject.toml

So that:

1 you won’t forget
2 you can pip install -r requirements.txt
3 you can pip install .

Part 1: Use python packages 11/34

Install them

Use a venv
Troubleshooting: $PYTHONPATH

Also troubleshooting:

import sys
print(sys.path)

Part 1: Use python packages 12/34

Install them

Use a venv
Troubleshooting: $PYTHONPATH

Also troubleshooting:

import sys
print(sys.path)

Part 1: Use python packages 12/34

Dependencies versions

keep them up to date
document your needs
document what won’t work

Part 1: Use python packages 13/34

Versions constraints & pinning

constraint graphs grow quickly
solutions can change over time
use a lock file with your current working solution

pip freeze > requirements.lock

Django==4.2.11
httpx==0.27.0
ipython==8.23.0
jedi==0.19.1
Jinja2==3.1.3
matplotlib-inline==0.1.6
numpy==1.26.4
pandas==2.2.1
tqdm==4.66.2

Part 1: Use python packages 14/34

Versions constraints & pinning

constraint graphs grow quickly
solutions can change over time
use a lock file with your current working solution

pip freeze > requirements.lock

Django==4.2.11
httpx==0.27.0
ipython==8.23.0
jedi==0.19.1
Jinja2==3.1.3
matplotlib-inline==0.1.6
numpy==1.26.4
pandas==2.2.1
tqdm==4.66.2

Part 1: Use python packages 14/34

Part 2: Distribute your packages

Follow community standards

ruff format
ruff check

Use those in your IDE, git hooks, and/or CI

Part 2: Distribute your packages 16/34

Follow community standards

ruff format
ruff check

Use those in your IDE, git hooks, and/or CI

Part 2: Distribute your packages 16/34

Choose a license

https://spdx.org/licenses/

eg.: BSD / MIT / Apache / GPL

Part 2: Distribute your packages 17/34

https://spdx.org/licenses/

Choose a package builder

setuptools
poetry
flit

Part 2: Distribute your packages 18/34

Write a pyproject.toml

name
version
authors
license
urls
dependencies
entrypoints
tooling configuration

ref. your builder docs

Part 2: Distribute your packages 19/34

Test your packaging

python -m build
pip install .
in your CI

This is enough for other people to use eg.:

pip install \
git+https://gitlab.laas.fr/gsaurel/ndh

Part 2: Distribute your packages 20/34

Test your packaging

python -m build
pip install .
in your CI

This is enough for other people to use eg.:

pip install \
git+https://gitlab.laas.fr/gsaurel/ndh

Part 2: Distribute your packages 20/34

Create a release

decide a version number: https://semver.org/
document changes between versions:
https://keepachangelog.com/
publish a git tag (bonus points if signed)
publish package archives (bonus points if signed)

Part 2: Distribute your packages 21/34

https://semver.org/
https://keepachangelog.com/

(Optionnal) Publish on PyPI

twine
flit publish
poetry publish
github.com/pypa/gh‑action‑pypi‑publish

Part 2: Distribute your packages 22/34

Part 3: Some python package managers

Your distribution package manager

apt
pacman
rpm

This is the most simple and most stable solution.

Part 3: Some python package managers 24/34

pip

This is the incontournable standard solution.

Part 3: Some python package managers 25/34

pip‑tools

https://github.com/jazzband/pip‑tools

Simple dependency constraint declaration + solution pinning

Part 3: Some python package managers 26/34

https://github.com/jazzband/pip-tools

poetry

https://python‑poetry.org/

Full feature and widest adoption.

Part 3: Some python package managers 27/34

https://python-poetry.org/

pipenv

Should be deprecated in favor of poetry.

Part 3: Some python package managers 28/34

pdm

https://pdm‑project.org/latest/

A bit more modern than poetry, but narrower adoption and
support.

Part 3: Some python package managers 29/34

https://pdm-project.org/latest/

conda / mamba

This will eat your home.

Part 3: Some python package managers 30/34

uv

https://github.com/astral‑sh/uv

The new cool kid.

Part 3: Some python package managers 31/34

https://github.com/astral-sh/uv

nix

The perfection you didn’t ask for, yet.

Come to the next formations to knowmore !

Part 3: Some python package managers 32/34

nix

The perfection you didn’t ask for, yet.

Come to the next formations to knowmore !

Part 3: Some python package managers 32/34

Questions ?

Links

Prior art
Managing Python Packages (2019)
Python Tooling (2022)

This presentation
https://homepages.laas.fr/gsaurel/talks/
python-packaging.pdf
https://matrix.to/#/room/#allo‑pi2:laas.fr

Questions ? 34/34

https://homepages.laas.fr/gsaurel/talks/managing-python-packages.pdf
https://homepages.laas.fr/gsaurel/talks/python-tooling.pdf
https://homepages.laas.fr/gsaurel/talks/python-packaging.pdf
https://homepages.laas.fr/gsaurel/talks/python-packaging.pdf
https://matrix.to/#/room/#allo-pi2:laas.fr

	Introduction
	Part 1: Use python packages
	Part 2: Distribute your packages
	Part 3: Some python package managers
	Questions ?

